
Problems Related to Classical and Universal List
Broadcasting

By: Saber Gholami
Supervisor: Professor Hovhannes Harutyunyan

Concordia University,
Department of Computer Science and Software Engineering

Nov 9th, 2022

1 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

2 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

3 / 67

Introduction

• Growth of using computer networks,
• Great attention to all major problems in this area,
• Information dissemination,
• Broadcasting:

⋄ Process of distributing a message starting from a single node (originator) to
all other nodes of the network using the network’s links.

4 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

5 / 67

Preliminaries

• The network: G = (V ,E), originator u ∈ V .

• Bcl(u,G): minimum time required to finish the broadcasting from u.
• Bcl(G) = max{Bcl(u,G)|u ∈ V (G)}
• Two major problems in this area:

⋄ Broadcast time problem,
⋄ Network design.

6 / 67

Preliminaries

• The network: G = (V ,E), originator u ∈ V .
• Bcl(u,G): minimum time required to finish the broadcasting from u.
• Bcl(G) = max{Bcl(u,G)|u ∈ V (G)}

• Two major problems in this area:

⋄ Broadcast time problem,
⋄ Network design.

6 / 67

Preliminaries

• The network: G = (V ,E), originator u ∈ V .
• Bcl(u,G): minimum time required to finish the broadcasting from u.
• Bcl(G) = max{Bcl(u,G)|u ∈ V (G)}
• Two major problems in this area:

⋄ Broadcast time problem,
⋄ Network design.

6 / 67

Literature Review - Broadcast time problem

• Finding Bcl(u,G) or Bcl(G),
• Broadcast scheme: ordering of the neighbours of each vertex, depending on the

originator:
⋄ u: originator,
⋄ once v gets informed, it will follow its list Luv ,
⋄ Each vertex has to maintain up to |V | different lists and know the originator

to perform broadcasting.

• NP-Hard in arbitrary graphs [1],
• Directions to follow:

⋄ Exact solution for a specific graph,
⋄ Heuristic,
⋄ Approximation algorithms.

[1] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing,
10(4):692–701, 1981.

7 / 67

Literature Review - Broadcast time problem

• Finding Bcl(u,G) or Bcl(G),
• Broadcast scheme: ordering of the neighbours of each vertex, depending on the

originator:
⋄ u: originator,
⋄ once v gets informed, it will follow its list Luv ,
⋄ Each vertex has to maintain up to |V | different lists and know the originator

to perform broadcasting.
• NP-Hard in arbitrary graphs [1],
• Directions to follow:

⋄ Exact solution for a specific graph,
⋄ Heuristic,
⋄ Approximation algorithms.

[1] Peter J. Slater, Ernest J. Cockayne, and Stephen T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing,
10(4):692–701, 1981.

7 / 67

Literature Review - Broadcast time problem - cont.

• Broadcasting with universal lists:
⋄ Each vertex v has a single list Lv to follow, regardless of the originator.

• Two sub-models:

⋄ Non-adaptive Bna(G): send to all vertices on the list,
⋄ Adaptive Ba(G): skip the vertices from which the message is received.

• Introduced indirectly by Slater et al. [1]; for any Tree, Bcl(T) = Ba(T).
• Diks and Pelc [2] distinguished between adaptive and non-adaptive models,

⋄ Also proposed several broadcast schemes for different graphs

• The hardness of the problem is unknown.

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4),
pp.692-701..
[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

8 / 67

Literature Review - Broadcast time problem - cont.

• Broadcasting with universal lists:
⋄ Each vertex v has a single list Lv to follow, regardless of the originator.

• Two sub-models:
⋄ Non-adaptive Bna(G): send to all vertices on the list,
⋄ Adaptive Ba(G): skip the vertices from which the message is received.

• Introduced indirectly by Slater et al. [1]; for any Tree, Bcl(T) = Ba(T).
• Diks and Pelc [2] distinguished between adaptive and non-adaptive models,

⋄ Also proposed several broadcast schemes for different graphs

• The hardness of the problem is unknown.

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4),
pp.692-701..
[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

8 / 67

Literature Review - Broadcast time problem - cont.

• Broadcasting with universal lists:
⋄ Each vertex v has a single list Lv to follow, regardless of the originator.

• Two sub-models:
⋄ Non-adaptive Bna(G): send to all vertices on the list,
⋄ Adaptive Ba(G): skip the vertices from which the message is received.

• Introduced indirectly by Slater et al. [1]; for any Tree, Bcl(T) = Ba(T).
• Diks and Pelc [2] distinguished between adaptive and non-adaptive models,

⋄ Also proposed several broadcast schemes for different graphs
• The hardness of the problem is unknown.

[1] Slater, P.J., Cockayne, E.J. and Hedetniemi, S.T., 1981. Information dissemination in trees. SIAM Journal on Computing, 10(4),
pp.692-701..
[2] Diks, K. and Pelc, A., 1996. Broadcasting with universal lists. Networks, 27(3), pp.183-196.

8 / 67

Literature Review - Network Design

• Graph G on n vertices is a broadcast graph (bg) under classical model if
Bcl(G) = ⌈log n⌉,

• A bg with minimum number of edges is called a minimum broadcast graph (mbg),
• The number of edges of an mbg on n vertices: B(n) or B(cl)(n).

9 / 67

Literature Review - Network Design - cont.

• B(cl)(n) is known for very few n,
• Exact values:

⋄ n ≤ 32, except for 23, 24, 25.
⋄ n = 2k , Hypercubes | Knödel Graph | Recursive circulant graph
⋄ n = 2k − 2, Knödel Graph

• Several upper bounds and lower bounds,
• No result under the universal lists model.

10 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

11 / 67

Fully Connected Trees

• A Fully Connected Tree FCTn:
⋄ A Clique of size n +
⋄ n arbitrary trees.

• Previous result on classical model: An
algorithm with a time complexity of
O(|V | log |V |) 1

Ti

Tn

T1

Tj Kn

Ti1

Ti2

Tid(i)

i n

1

j

i1

i2

id(i)

Figure: A Fully Connected Tree FCTn

1Harutyunyan, H. A., Maraachlian, E. (2009a). Broadcasting in Fully Connected Trees. In 15th IEEE International Conference on
Parallel and Distributed Systems, (ICPADS) (pp. 740–745).

12 / 67

FCTn - Broadcast Algorithm for Root Vertices

• Instead of finding Bcl(i ,FCTn), solve this:
⋄ Bcl(i ,FCTn) ≤ τ?

• Lemma:
⋄ max

{
⌈log n⌉,max{Bcl(i ,Ti)}

}︸ ︷︷ ︸
lb

≤ Bcl(i ,FCTn) ≤ ⌈log n⌉+max{Bcl(i ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main algorithm (BRτ) within this method.

• Proof of correctness.
• Complexity: O(|V | log log n)

13 / 67

FCTn - Broadcast Algorithm for Root Vertices

• Instead of finding Bcl(i ,FCTn), solve this:
⋄ Bcl(i ,FCTn) ≤ τ?

• Lemma:
⋄ max

{
⌈log n⌉,max{Bcl(i ,Ti)}

}︸ ︷︷ ︸
lb

≤ Bcl(i ,FCTn) ≤ ⌈log n⌉+max{Bcl(i ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main algorithm (BRτ) within this method.

• Proof of correctness.
• Complexity: O(|V | log log n)

13 / 67

FCTn - Broadcast Algorithm for Root Vertices

• Instead of finding Bcl(i ,FCTn), solve this:
⋄ Bcl(i ,FCTn) ≤ τ?

• Lemma:
⋄ max

{
⌈log n⌉,max{Bcl(i ,Ti)}

}︸ ︷︷ ︸
lb

≤ Bcl(i ,FCTn) ≤ ⌈log n⌉+max{Bcl(i ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main algorithm (BRτ) within this method.

• Proof of correctness.
• Complexity: O(|V | log log n)

13 / 67

FCTn - Broadcast Algorithm for Root Vertices

• Instead of finding Bcl(i ,FCTn), solve this:
⋄ Bcl(i ,FCTn) ≤ τ?

• Lemma:
⋄ max

{
⌈log n⌉,max{Bcl(i ,Ti)}

}︸ ︷︷ ︸
lb

≤ Bcl(i ,FCTn) ≤ ⌈log n⌉+max{Bcl(i ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main algorithm (BRτ) within this method.

• Proof of correctness.
• Complexity: O(|V | log log n)

13 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

14 / 67

Hypercube of Trees

• A Hypercube of Trees HTk :
⋄ A hypercube of dimension k +
⋄ 2k arbitrary trees.

• Current upper bound: An
approximation algorithm with a
(2 − ε)-approximation ratio 2

r0 r1

r2 r3

r4

r6

r5

r7

r01
r0d0

T01
T0d0

Tr0

Tr1

Tr4 Tr5

Tr7

Tr3

Tr6

Tr2

Figure: HT3, A hypercube of trees with
dimension 3

2Bhabak, P., Harutyunyan, H. A. (2014). Broadcast problem in hypercube of trees. In International Workshop on Frontiers in
Algorithmics (pp. 1–12). 15 / 67

HTk - Proposed Heuristic

• Instead of finding Bcl(u,HTk), solve this:
⋄ Bcl(u,HTk) ≤ τ?

• Already know the upper bound and lower bound:
⋄ max

{
k , max

0≤i≤2k−1
{Bcl(ri ,Ti)}

}
︸ ︷︷ ︸

lb

≤ Bcl(u,HTk) ≤ k + max
0≤i≤2k−1

{Bcl(ri ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main heuristic (BRτ) within this method.

• Our numerical results on graphs of up to 5 million vertices indicate that the
heuristic is able to outperform the best-known algorithm for the same problem in
up to 90% of the experiments while speeding up the process up to 30%.

16 / 67

HTk - Proposed Heuristic

• Instead of finding Bcl(u,HTk), solve this:
⋄ Bcl(u,HTk) ≤ τ?

• Already know the upper bound and lower bound:
⋄ max

{
k , max

0≤i≤2k−1
{Bcl(ri ,Ti)}

}
︸ ︷︷ ︸

lb

≤ Bcl(u,HTk) ≤ k + max
0≤i≤2k−1

{Bcl(ri ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main heuristic (BRτ) within this method.

• Our numerical results on graphs of up to 5 million vertices indicate that the
heuristic is able to outperform the best-known algorithm for the same problem in
up to 90% of the experiments while speeding up the process up to 30%.

16 / 67

HTk - Proposed Heuristic

• Instead of finding Bcl(u,HTk), solve this:
⋄ Bcl(u,HTk) ≤ τ?

• Already know the upper bound and lower bound:
⋄ max

{
k , max

0≤i≤2k−1
{Bcl(ri ,Ti)}

}
︸ ︷︷ ︸

lb

≤ Bcl(u,HTk) ≤ k + max
0≤i≤2k−1

{Bcl(ri ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main heuristic (BRτ) within this method.

• Our numerical results on graphs of up to 5 million vertices indicate that the
heuristic is able to outperform the best-known algorithm for the same problem in
up to 90% of the experiments while speeding up the process up to 30%.

16 / 67

HTk - Proposed Heuristic

• Instead of finding Bcl(u,HTk), solve this:
⋄ Bcl(u,HTk) ≤ τ?

• Already know the upper bound and lower bound:
⋄ max

{
k , max

0≤i≤2k−1
{Bcl(ri ,Ti)}

}
︸ ︷︷ ︸

lb

≤ Bcl(u,HTk) ≤ k + max
0≤i≤2k−1

{Bcl(ri ,Ti)}︸ ︷︷ ︸
ub

• Do a binary search on this range.
⋄ Invoke the main heuristic (BRτ) within this method.

• Our numerical results on graphs of up to 5 million vertices indicate that the
heuristic is able to outperform the best-known algorithm for the same problem in
up to 90% of the experiments while speeding up the process up to 30%.

16 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

17 / 67

Fully-adaptive Model

• Another sub-model for universal lists,
• A universal list Lv is maintained at each vertex v ,
• Once informed, follow the list and skip all informed vertices!

⋄ Similarly to the classical model: No unnecessary calls!

• Theorem 3.1. Bcl(G) ≤ Bfa(G) ≤ Ba(G) ≤ Bna(G), for any graph G .

•

Model Symbol No. of unnecessary calls Required Space Speed
Non-adaptive Bna(G) Many

∑
1≤i≤n di Very Slow

Adaptive Ba(G) Few 2 ×
∑

1≤i≤n di Slow
Fully Adaptive Bfa(G) 0 2 ×

∑
1≤i≤n di Moderate

Classical Bcl(G) 0 n ×
∑

1≤i≤n di Very Fast

18 / 67

Fully-adaptive Model

• Another sub-model for universal lists,
• A universal list Lv is maintained at each vertex v ,
• Once informed, follow the list and skip all informed vertices!

⋄ Similarly to the classical model: No unnecessary calls!
• Theorem 3.1. Bcl(G) ≤ Bfa(G) ≤ Ba(G) ≤ Bna(G), for any graph G .

•

Model Symbol No. of unnecessary calls Required Space Speed
Non-adaptive Bna(G) Many

∑
1≤i≤n di Very Slow

Adaptive Ba(G) Few 2 ×
∑

1≤i≤n di Slow
Fully Adaptive Bfa(G) 0 2 ×

∑
1≤i≤n di Moderate

Classical Bcl(G) 0 n ×
∑

1≤i≤n di Very Fast

18 / 67

Fully-adaptive Model - Definitions

• A broadcast scheme: Matrix σn×∆,
⋄ Row i of σ corresponds to an ordering of neighbors for vertex vi .

• Set of all possible schemes: Σ.

• Let M ∈ {na, a, fa} be a model:

⋄ Bσ
M(v ,G): the time steps needed to inform all the vertices in G from v while

following σ under M,
⋄ Bσ

M(G) = maxv∈V {Bσ
M(v ,G)},

⋄ BM(G) = minσ∈Σ{Bσ
M(G)}.

19 / 67

Fully-adaptive Model - Definitions

• A broadcast scheme: Matrix σn×∆,
⋄ Row i of σ corresponds to an ordering of neighbors for vertex vi .

• Set of all possible schemes: Σ.
• Let M ∈ {na, a, fa} be a model:

⋄ Bσ
M(v ,G): the time steps needed to inform all the vertices in G from v while

following σ under M,
⋄ Bσ

M(G) = maxv∈V {Bσ
M(v ,G)},

⋄ BM(G) = minσ∈Σ{Bσ
M(G)}.

19 / 67

Fully-adaptive model - Example

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7

v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null

v4 v6

v2 v3

v7v8

v5v1

• Bσ
fa(v1,G) = 4, while Bσ

a (v1,G) = 5 and Bσ
na(v1,G) = 6.

20 / 67

Fully-adaptive model - Example

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7

v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null

v4 v6

v2 v3

v7v8

v5v1

• Bσ
fa(v1,G) = 4, while Bσ

a (v1,G) = 5 and Bσ
na(v1,G) = 6.

20 / 67

Fully-adaptive model - Example

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7

v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null

v4 v6

v2 v3

v7v8

v5v1

• Bσ
fa(v1,G) = 4, while Bσ

a (v1,G) = 5 and Bσ
na(v1,G) = 6.

20 / 67

Fully-adaptive model - Example

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7

v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null

v4 v6

v2 v3

v7v8

v5v1

• Bσ
fa(v1,G) = 4, while Bσ

a (v1,G) = 5 and Bσ
na(v1,G) = 6.

20 / 67

Fully-adaptive model - Example

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7

v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null

v4 v6

v2 v3

v7v8

v5v1

• Bσ
fa(v1,G) = 4, while Bσ

a (v1,G) = 5 and Bσ
na(v1,G) = 6.

20 / 67

Fully-adaptive model - Example

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7

v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null

v4 v6

v2 v3

v7v8

v5v1

• Bσ
fa(v1,G) = 4, while Bσ

a (v1,G) = 5 and Bσ
na(v1,G) = 6.

20 / 67

Fully-adaptive model - Example

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7

v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null

v4 v6

v2 v3

v7v8

v5v1

• Bσ
fa(v1,G) = 4, while Bσ

a (v1,G) = 5 and Bσ
na(v1,G) = 6.

20 / 67

Fully-adaptive Model - AAA

• Assumptions:
⋄ None-faulty network with established links,
⋄ Unique and heavy message,
⋄ The message: header + payload,

• Architecture:

⋄ How to know the state of each neighbour?

⋄ Push model,
⋄ Pull model,

• Applications:

⋄ Update procedure in SDNs:

⋄ Changing routing policies, adjusting links’ weights, etc.
⋄ The data plane only forwards packets,
⋄ Routing and load balancing decisions are made in a centralized controller,
⋄ The network manager must optimize the forwarding tables (broadcast

schemes).

21 / 67

Fully-adaptive Model - AAA

• Assumptions:
⋄ None-faulty network with established links,
⋄ Unique and heavy message,
⋄ The message: header + payload,

• Architecture:
⋄ How to know the state of each neighbour?

⋄ Push model,
⋄ Pull model,

• Applications:

⋄ Update procedure in SDNs:

⋄ Changing routing policies, adjusting links’ weights, etc.
⋄ The data plane only forwards packets,
⋄ Routing and load balancing decisions are made in a centralized controller,
⋄ The network manager must optimize the forwarding tables (broadcast

schemes).

21 / 67

Fully-adaptive Model - AAA

• Assumptions:
⋄ None-faulty network with established links,
⋄ Unique and heavy message,
⋄ The message: header + payload,

• Architecture:
⋄ How to know the state of each neighbour?

⋄ Push model,
⋄ Pull model,

• Applications:
⋄ Update procedure in SDNs:

⋄ Changing routing policies, adjusting links’ weights, etc.
⋄ The data plane only forwards packets,
⋄ Routing and load balancing decisions are made in a centralized controller,
⋄ The network manager must optimize the forwarding tables (broadcast

schemes).
21 / 67

Results on fully-adaptive model

• Trees T :
⋄ Theorem 5.2.1. Bcl(T) = Bfa(T) = Ba(T).

• Grids Gm×n:

⋄ Corollary 5.2.1. Bfa(Gm×n) = m + n − 2.

• Tori Tm×n:

⋄ Theorem 5.2.2.

⋄ Bfa(Tm×n) = ⌊n2⌋+ ⌊m2 ⌋, if n and m are even,
⋄ Bfa(Tm×n) = ⌊n2⌋+ ⌊m2 ⌋+ 1, if one of m and n is even and the other

one is odd,
⋄ ⌊n2⌋+ ⌊m2 ⌋+ 1 ≤ Bfa(Tm×n) ≤ ⌊n2⌋+ ⌊m2 ⌋+ 2, if both m and n are odd.

22 / 67

Results on fully-adaptive model

• Trees T :
⋄ Theorem 5.2.1. Bcl(T) = Bfa(T) = Ba(T).

• Grids Gm×n:
⋄ Corollary 5.2.1. Bfa(Gm×n) = m + n − 2.

• Tori Tm×n:

⋄ Theorem 5.2.2.

⋄ Bfa(Tm×n) = ⌊n2⌋+ ⌊m2 ⌋, if n and m are even,
⋄ Bfa(Tm×n) = ⌊n2⌋+ ⌊m2 ⌋+ 1, if one of m and n is even and the other

one is odd,
⋄ ⌊n2⌋+ ⌊m2 ⌋+ 1 ≤ Bfa(Tm×n) ≤ ⌊n2⌋+ ⌊m2 ⌋+ 2, if both m and n are odd.

22 / 67

Results on fully-adaptive model

• Trees T :
⋄ Theorem 5.2.1. Bcl(T) = Bfa(T) = Ba(T).

• Grids Gm×n:
⋄ Corollary 5.2.1. Bfa(Gm×n) = m + n − 2.

• Tori Tm×n:
⋄ Theorem 5.2.2.

⋄ Bfa(Tm×n) = ⌊n2⌋+ ⌊m2 ⌋, if n and m are even,
⋄ Bfa(Tm×n) = ⌊n2⌋+ ⌊m2 ⌋+ 1, if one of m and n is even and the other

one is odd,
⋄ ⌊n2⌋+ ⌊m2 ⌋+ 1 ≤ Bfa(Tm×n) ≤ ⌊n2⌋+ ⌊m2 ⌋+ 2, if both m and n are odd.

22 / 67

Results on fully-adaptive model - cont.

a) H3 b) CCC3

000 001

010 011

100 101

110 111

< 000, 0 >

< 000, 1 >

< 000, 2 >

< 001, 0 >

< 001, 1 >

< 001, 2 >

< 100, 0 >

< 100, 1 >

< 100, 2 >
< 101, 0 >

< 101, 1 >

< 101, 2 >

< 010, 0 >< 010, 1 >

< 010, 2 >

< 011, 1 >
< 011, 0 >

< 011, 2 >

< 110, 0 >

< 110, 1 >

< 110, 2 >

< 111, 0 >

< 111, 1 >

< 111, 2 >

• Hypercubes Hd :
⋄ Theorem 7.1.2. Bfa(Hd) = d .

⋄ Corollary 7.1.4. Hypercube Hd is an mbg on 2d vertices under the
fully-adaptive model.

• Cube Connected Cycles CCCd :

⋄ Theorem 5.2.3. Bfa(CCCd) = ⌈5d
2 ⌉ − 1.

23 / 67

Results on fully-adaptive model - cont.

a) H3 b) CCC3

000 001

010 011

100 101

110 111

< 000, 0 >

< 000, 1 >

< 000, 2 >

< 001, 0 >

< 001, 1 >

< 001, 2 >

< 100, 0 >

< 100, 1 >

< 100, 2 >
< 101, 0 >

< 101, 1 >

< 101, 2 >

< 010, 0 >< 010, 1 >

< 010, 2 >

< 011, 1 >
< 011, 0 >

< 011, 2 >

< 110, 0 >

< 110, 1 >

< 110, 2 >

< 111, 0 >

< 111, 1 >

< 111, 2 >

• Hypercubes Hd :
⋄ Theorem 7.1.2. Bfa(Hd) = d .

⋄ Corollary 7.1.4. Hypercube Hd is an mbg on 2d vertices under the
fully-adaptive model.

• Cube Connected Cycles CCCd :

⋄ Theorem 5.2.3. Bfa(CCCd) = ⌈5d
2 ⌉ − 1.

23 / 67

Results on fully-adaptive model - cont.

a) H3 b) CCC3

000 001

010 011

100 101

110 111

< 000, 0 >

< 000, 1 >

< 000, 2 >

< 001, 0 >

< 001, 1 >

< 001, 2 >

< 100, 0 >

< 100, 1 >

< 100, 2 >
< 101, 0 >

< 101, 1 >

< 101, 2 >

< 010, 0 >< 010, 1 >

< 010, 2 >

< 011, 1 >
< 011, 0 >

< 011, 2 >

< 110, 0 >

< 110, 1 >

< 110, 2 >

< 111, 0 >

< 111, 1 >

< 111, 2 >

• Hypercubes Hd :
⋄ Theorem 7.1.2. Bfa(Hd) = d .

⋄ Corollary 7.1.4. Hypercube Hd is an mbg on 2d vertices under the
fully-adaptive model.

• Cube Connected Cycles CCCd :
⋄ Theorem 5.2.3. Bfa(CCCd) = ⌈5d

2 ⌉ − 1.

23 / 67

Results on fully-adaptive model - cont.

• Is Bcl(G) = Bfa(G) always?

⋄ No!
⋄ Proposition 5.2.1. There exists graph G with Bcl(G) < Bfa(G):

⋄

C2n−1 C ′
2n−1 u

u3u1

u2 u4

y1

y2x2

x1

C ′
11C11

a) b)

24 / 67

Results on fully-adaptive model - cont.

• Is Bcl(G) = Bfa(G) always?
⋄ No!
⋄ Proposition 5.2.1. There exists graph G with Bcl(G) < Bfa(G):

⋄

C2n−1 C ′
2n−1 u

u3u1

u2 u4

y1

y2x2

x1

C ′
11C11

a) b)

24 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

25 / 67

Results on non-adaptive model

• Complete k−ary trees Tk,h:
⋄ Theorem 6.1.1. Bna(Tk,h) = kh + 2h − 1.

• Binomial trees Td :

⋄ Proposition 6.1.1. Bna(Td) = 3d − 2.

• Complete Bipartite graph Km×n:

⋄ Theorem 6.1.2. Bcl(Km×n) = ⌈log n⌉+ 1 +max{⌈m−2⌈log n⌉

n ⌉, 0}.
⋄ Theorem 6.1.3. Bna(Km×n) ≤ Bcl(Km×n) + 3 × ⌈

√
Bcl(Km×n)⌉.

26 / 67

Results on non-adaptive model

• Complete k−ary trees Tk,h:
⋄ Theorem 6.1.1. Bna(Tk,h) = kh + 2h − 1.

• Binomial trees Td :
⋄ Proposition 6.1.1. Bna(Td) = 3d − 2.

• Complete Bipartite graph Km×n:

⋄ Theorem 6.1.2. Bcl(Km×n) = ⌈log n⌉+ 1 +max{⌈m−2⌈log n⌉

n ⌉, 0}.
⋄ Theorem 6.1.3. Bna(Km×n) ≤ Bcl(Km×n) + 3 × ⌈

√
Bcl(Km×n)⌉.

26 / 67

Results on non-adaptive model

• Complete k−ary trees Tk,h:
⋄ Theorem 6.1.1. Bna(Tk,h) = kh + 2h − 1.

• Binomial trees Td :
⋄ Proposition 6.1.1. Bna(Td) = 3d − 2.

• Complete Bipartite graph Km×n:

⋄ Theorem 6.1.2. Bcl(Km×n) = ⌈log n⌉+ 1 +max{⌈m−2⌈log n⌉

n ⌉, 0}.
⋄ Theorem 6.1.3. Bna(Km×n) ≤ Bcl(Km×n) + 3 × ⌈

√
Bcl(Km×n)⌉.

26 / 67

Results on non-adaptive model - cont.

• A general upper bound for trees:
⋄ Theorem 6.1.4. Bna(T) ≤ Bcl(T) + ⌊diam(T)

2 ⌋.
• Tightest bounds on trees:

⋄ Theorem 6.1.5.

max

{
Bcl(T)+1, ⌈3.diam(T)− 1

2
⌉

}
≤ Bna(T) ≤ min

{
Bcl(T) + ⌊diam(T)

2
⌋, bcl(T)+diam(T)

}
(1)

27 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

28 / 67

Broadcast graphs under fully-adaptive model

• Graph G on n vertices is a broadcast graph (bg) if Bfa(G) = ⌈log n⌉,
• A bg with the minimum number of edges is called a minimum broadcast graph

(mbg),
• The number of edges of an mbg on n vertices: B(fa)(n).
• Lemma 7.1.1. If there is a graph G on n vertices for which Bfa(G) = ⌈log n⌉,

then B(cl)(n) ≤ B(fa)(n).
• mbg’s for n ≤ 10:

a)

76 3

1

5 4

2

b)

9876 3

1

5 4

2

c)

1
2

3

4

5
6

7

8 9 10

29 / 67

Broadcast graphs under fully-adaptive model - cont.

• bg’s for 11 ≤ n ≤ 14:

d)

1

2

3

4

5

6

7

8

9

10

11

e)

1 7

4

10

2

3 5

6

8

911

12

f)

76 3

1

5 4

2

13 10

8

12 11

9

g)

76 3

1

5 4

2

1413 10

8

12 11

9

n a3a a4a a5a a6a a7a a8a a9a a10a a11a a12a a13a a14a

Lower bound on B(fa)(n) 2 4 5 6 8 12 10 12 13 15 18 21
Upper bound on B(fa)(n) 2 4 5 6 8 12 10 12 15 17 23 23

30 / 67

Broadcast graphs under fully-adaptive model - cont.

• General construction of bg’s:
⋄ Lemma 7.1.2. Consider a graph G = (V ,E) with n vertices, m edges, and
Bfa(G) = τ . It is always possible to construct a graph G ′ = (V ′,E ′) with 2n
vertices, 2m + n edges, and Bfa(G

′) = τ + 1.
G1 G2

x1

x2

xn

y1

y2

yn

31 / 67

Broadcast graphs under fully-adaptive model - cont.

• This yields 4 infinite families of bg’s under fully-adaptive model:
⋄ Theorem 7.1.1. For any integer k = ⌈log n⌉ ≥ 4:

B(fa)(n) = B(fa)(2k−1 + 2k−4) ≤ n⌈log n⌉
2 − 8n

9 ,
B(fa)(n) = B(fa)(2k−1 + 2k−3) ≤ n⌈log n⌉

2 − 4n
5 ,

B(fa)(n) = B(fa)(2k−1 + 2k−2) ≤ n⌈log n⌉
2 − n

2 ,
B(fa)(n) = B(fa)(2k−1 + 2k−2 + 2k−3) ≤ n⌈log n⌉

2 − 5n
14 .

32 / 67

Comparing broadcast time of various graphs

Graph G Bcl(G) Bfa(G) Ba(G) Bna(G)

Path Pn n − 1 n − 1 n − 1 ⌈3n
2 ⌉ − 2

Cycle Cn ⌈n2⌉, ⌈n2⌉ ⌈n2⌉ ⌊2n
3 ⌋

Star Sn n − 1 n − 1 n − 1 n

Complete graph Kn ⌈log n⌉ ≤ ⌈log n⌉ +
2⌈
√
log n⌉

≤ ⌈log n⌉ +
2⌈
√
log n⌉

≤ ⌈log n⌉ +
2⌈
√
log n⌉

Complete Bipartite
Km×n

t1 = ⌈log n⌉ + 1 +

max{⌈m−2⌈log n⌉

n ⌉, 0}
≤ t1 + 3⌈

√
t1⌉ ≤ t1 + 3⌈

√
t1⌉ ≤ t1 + 3⌈

√
t1⌉

Complete k−ary
tree Tk,h

kh + h − 1 kh + h − 1 kh + h − 1 kh + 2h − 1

Binomial tree Td 2d − 1 2d − 1 2d − 1 3d − 2
Grid Gm×n m + n − 2 m + n − 2 m + n − 2 m + n − 1
Tori Tm×n ⌊n2⌋+⌊m2 ⌋, if m and

n are even
⌊n2⌋+⌊m2 ⌋+1, oth-
erwise

⌊n2⌋+⌊m2 ⌋, if m and
n are even
⌊n2⌋ + ⌊m2 ⌋ + 1, if
only one of m and
n is even
≤ ⌊n2⌋ + ⌊m2 ⌋ + 2,
otherwise

≤ ⌊n2⌋+ ⌊m2 ⌋+ 3 ≤ ⌊n2⌋+ ⌊m2 ⌋+ 5

Hypercube Hd d d ≤ d(d−1)
2 + 1 ≤ d(d+1)

2 + 1
Cube Connected
Cycle CCCd

⌈5d
2 ⌉ − 1 ⌈5d

2 ⌉ − 1 ≤ 2⌈5d
2 ⌉ − 1 ≤ 3⌈5d

2 ⌉ − 3

Shuffle Exchange
SEd

2d − 1 ≤ 4d − 1 ≤ 4d − 1 ≤ 6d − 3

De Bruijn DBd ≤ 3
2(d + 1),

≥ 1.3171d
≤ 3d + 1 ≤ 3d + 1 ≤ 4d

33 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

34 / 67

Introduction

• Proposing the first heuristic for broadcasting with universal lists:
• Given a graph G and a model M ∈ {fa, a, na}, find a broadcast scheme σ ∈ Σ that

minimizes Bσ
M(G).

• Why this problem is difficult?

⋄ Proposition 8.2.1. For a graph G on n vertices, where the degree of vertex i
is di , the size of search space for the problem of broadcasting using universal
list is as follows:

|Σ(G)| =
n∏

i=1

di∑
j=0

(

(
di
j

)
× j!) (2)

⋄ Exponential growth!

35 / 67

Introduction

• Proposing the first heuristic for broadcasting with universal lists:
• Given a graph G and a model M ∈ {fa, a, na}, find a broadcast scheme σ ∈ Σ that

minimizes Bσ
M(G).

• Why this problem is difficult?
⋄ Proposition 8.2.1. For a graph G on n vertices, where the degree of vertex i

is di , the size of search space for the problem of broadcasting using universal
list is as follows:

|Σ(G)| =
n∏

i=1

di∑
j=0

(

(
di
j

)
× j!) (2)

⋄ Exponential growth!

35 / 67

HUB-GA: Methodology

• HUB-GA: a Heuristic for Universal list model of Broadcasting with Genetic
Algorithm.

• GA: a population based search algorithm.

⋄ Each solution to the problem is a Chromosome,
⋄ The fitness of each individual is evaluated with a fitness function.
⋄ To improve the quality of solutions, the best solutions are selected for

reproduction using two primary operations of GA: Crossover and Mutation.
⋄ GA tries to find a suitable solution by repeating this process over multiple

generations.

36 / 67

HUB-GA: Methodology

• HUB-GA: a Heuristic for Universal list model of Broadcasting with Genetic
Algorithm.

• GA: a population based search algorithm.
⋄ Each solution to the problem is a Chromosome,
⋄ The fitness of each individual is evaluated with a fitness function.
⋄ To improve the quality of solutions, the best solutions are selected for

reproduction using two primary operations of GA: Crossover and Mutation.
⋄ GA tries to find a suitable solution by repeating this process over multiple

generations.

36 / 67

HUB-GA: Methodology

37 / 67

HUB-GA: Genes, Chromosomes, and Population

• Consider a graph G with n vertices, where di = the degree of
vertex i .

• Gene i , g (i): An arbitrary ordering of the neighbors of vertex i
with size at most di .

• Chromosome is a collection of n genes: g (1), g (2), · · · , g (n).

⋄ A chromosome is a matrix σ with n rows (or n genes) and
∆ columns.

⋄ In GA, a chromosome is a possible solution for the problem:
any σ ∈ Σ may be an optimal broadcast scheme.

⋄ Guessing the optimal chromosome out of many possible
solutions is impossible.

• The first step of HUB-GA: generate |p| solutions randomly, called
the first population.

38 / 67

HUB-GA: Genes, Chromosomes, and Population

• Consider a graph G with n vertices, where di = the degree of
vertex i .

• Gene i , g (i): An arbitrary ordering of the neighbors of vertex i
with size at most di .

• Chromosome is a collection of n genes: g (1), g (2), · · · , g (n).

⋄ A chromosome is a matrix σ with n rows (or n genes) and
∆ columns.

⋄ In GA, a chromosome is a possible solution for the problem:
any σ ∈ Σ may be an optimal broadcast scheme.

⋄ Guessing the optimal chromosome out of many possible
solutions is impossible.

• The first step of HUB-GA: generate |p| solutions randomly, called
the first population.

38 / 67

HUB-GA: Genes, Chromosomes, and Population

• Consider a graph G with n vertices, where di = the degree of
vertex i .

• Gene i , g (i): An arbitrary ordering of the neighbors of vertex i
with size at most di .

• Chromosome is a collection of n genes: g (1), g (2), · · · , g (n).
⋄ A chromosome is a matrix σ with n rows (or n genes) and
∆ columns.

⋄ In GA, a chromosome is a possible solution for the problem:
any σ ∈ Σ may be an optimal broadcast scheme.

⋄ Guessing the optimal chromosome out of many possible
solutions is impossible.

• The first step of HUB-GA: generate |p| solutions randomly, called
the first population.

38 / 67

HUB-GA: Genes, Chromosomes, and Population

• Consider a graph G with n vertices, where di = the degree of
vertex i .

• Gene i , g (i): An arbitrary ordering of the neighbors of vertex i
with size at most di .

• Chromosome is a collection of n genes: g (1), g (2), · · · , g (n).
⋄ A chromosome is a matrix σ with n rows (or n genes) and
∆ columns.

⋄ In GA, a chromosome is a possible solution for the problem:
any σ ∈ Σ may be an optimal broadcast scheme.

⋄ Guessing the optimal chromosome out of many possible
solutions is impossible.

• The first step of HUB-GA: generate |p| solutions randomly, called
the first population.

38 / 67

HUB-GA: Genes, Chromosomes, and Population

• Consider a graph G with n vertices, where di = the degree of
vertex i .

• Gene i , g (i): An arbitrary ordering of the neighbors of vertex i
with size at most di .

• Chromosome is a collection of n genes: g (1), g (2), · · · , g (n).
⋄ A chromosome is a matrix σ with n rows (or n genes) and
∆ columns.

⋄ In GA, a chromosome is a possible solution for the problem:
any σ ∈ Σ may be an optimal broadcast scheme.

⋄ Guessing the optimal chromosome out of many possible
solutions is impossible.

• The first step of HUB-GA: generate |p| solutions randomly, called
the first population.

38 / 67

HUB-GA: Fitness function

• The fitness function, f (σ), evaluates the fitness of a chromosome σ.
• f (σ) should be minimized when σ is an optimal solution.

⋄ f1(σ): the broadcast time:

f1(σ) = max
u∈V (G)

{Bσ
M(u,G)} = Bσ

M(G) (3)

⋄ f2(σ): average broadcast time:

f2(σ) =

∑
u∈V (G) B

σ
M(u,G)

n
(4)

39 / 67

HUB-GA: Fitness function

• The fitness function, f (σ), evaluates the fitness of a chromosome σ.
• f (σ) should be minimized when σ is an optimal solution.

⋄ f1(σ): the broadcast time:

f1(σ) = max
u∈V (G)

{Bσ
M(u,G)} = Bσ

M(G) (3)

⋄ f2(σ): average broadcast time:

f2(σ) =

∑
u∈V (G) B

σ
M(u,G)

n
(4)

39 / 67

HUB-GA: Crossover

• Two chromosomes are selected as the parents (selection phase), and then two
children (called offsprings) are generated by crossover.

• Selection: K−way tournament: select the fittest chromosome among K randomly
chosen chromosomes.

40 / 67

HUB-GA: Crossover

• Two chromosomes are selected as the parents (selection phase), and then two
children (called offsprings) are generated by crossover.

• Selection: K−way tournament: select the fittest chromosome among K randomly
chosen chromosomes.

40 / 67

HUB-GA: Crossover

• Two chromosomes are selected as the parents (selection phase), and then two
children (called offsprings) are generated by crossover.

• Selection: K−way tournament: select the fittest chromosome among K randomly
chosen chromosomes.

40 / 67

HUB-GA: Mutation

• Mutation: A gene of an offspring is changed randomly with a small probability.
• In our algorithm: shuffle the ordering of a randomly selected gene.

41 / 67

HUB-GA: Mutation

• Mutation: A gene of an offspring is changed randomly with a small probability.
• In our algorithm: shuffle the ordering of a randomly selected gene.

41 / 67

HUB-GA: Acceptance

• After doing Crossover and Mutation, the population size grows.
• One possible solution to keep the current generation manageable with limited

resources is to retain the original population size by allowing a fixed number of
chromosomes to survive into the next generation.

⋄ K−way tournament.

42 / 67

HUB-GA: Acceptance

• After doing Crossover and Mutation, the population size grows.
• One possible solution to keep the current generation manageable with limited

resources is to retain the original population size by allowing a fixed number of
chromosomes to survive into the next generation.
⋄ K−way tournament.

42 / 67

HUB-GA: Stopping criterion

• The execution of HUB-GA terminates if, after St iterations, the fitness score of the
fittest individual does not change drastically (convergence).

• Once the stopping criterion is met, the best chromosome (solution) from the
current generation and its fitness score are returned as the final answer.

43 / 67

HUB-GA: Remarks

• The first heuristic for this problem,
• Working for arbitrary graphs,
• Working for any model under universal lists
• Possibility of defining various fitness scores,
• Providing the broadcast scheme.

44 / 67

HUB-GA: Experimental setup

45 / 67

HUB-GA: Experiment 1

• Change |p| and St , report f1(σ) and f2(σ) and the run time.
• Choosing |p| is a trade-off. The bigger the |p|:

⋄ The higher the chance of finding a near-optimal solution in early iterations.
⋄ The higher the computational cost.

• The same is true for St

46 / 67

HUB-GA: Experiment 1, |p|

47 / 67

HUB-GA: Experiment 1, St

48 / 67

HUB-GA: Experiment 2

• Compare the GA heuristic for the universal list model with known bounds on the
classical model for commonly used interconnection networks.

49 / 67

HUB-GA: Experiment 2

50 / 67

HUB-GA: Experiment 2

• Conjecture 8.4.1. For a sufficiently large n, the broadcast time of a complete
graph Kn is bounded as follows:

⌈log n⌉ = Bcl(Kn) < Bfa(Kn) < Ba(Kn) ≤ Bna(Kn) ≤ ⌈log n⌉+ 2⌈
√
log n⌉ (5)

51 / 67

HUB-GA: Experiment 3

• Compare the GA heuristic with degree-based heuristics:
⋄ Ran. Seq.: The ordering of a vertex is uniformly random.
⋄ Inc. Deg.: Neighbors of a vertex are sorted in ascending order based on

their degree.
⋄ Dec. Deg.: Neighbors of a vertex are sorted in descending order based on

their degree.
• For graphs with clique-like subgraphs:

52 / 67

HUB-GA: Experiment 3, RCn,m

53 / 67

HUB-GA: Experiment 3, RCn,m

54 / 67

HUB-GA: Experiment 3, RCn,m

55 / 67

HUB-GA: Experiment 4

• Compare the GA heuristic with state-of-the-art heuristics for classical broadcasting:
⋄ Two lower bounds on Bcl(v ,G): TLB, LBB,
⋄ Six upper bounds on Bcl(v ,G): TreeBlock, NTBA, NEWH, ILP, ACS,
BRKGA.

• For two types of networks:
⋄ Interconnection networks (44 instances),
⋄ Connected complex networks (30 instances).

56 / 67

HUB-GA: Experiment 4, Interconnection networks

57 / 67

HUB-GA: Experiment 4, Connected complex networks

58 / 67

Outline

1 Introduction

2 Preliminaries and Literature Review

3 Optimal broadcasting in Fully-Connected Trees

4 A Broadcasting Heuristic for Hypercube of Trees

5 Fully-adaptive Model for Broadcasting with Universal Lists

6 Non-adaptive Broadcasting

7 Broadcast Graphs under the Fully-adaptive Model

8 HUB-GA: A Heuristic for Universal lists Broadcasting using Genetic Algorithm

9 Conclusion and Future Works

59 / 67

Conclusion

• For classical model:
⋄ An exact algorithm for FCTn,
⋄ A heuristic for HTk .

• Suggesting fully-adaptive model:

⋄ mbg ’s for n ≤ 10,

⋄ bg ’s for 11 ≤ n ≤ 14,

⋄ The first infinite family of bg ’s under universal lists model,
⋄ Exact value of Bfa(G) for: trees, grids, hypercubes, cube connected cycles.
⋄ Upper bound on Bfa(G) for tori.

60 / 67

Conclusion

• For classical model:
⋄ An exact algorithm for FCTn,
⋄ A heuristic for HTk .

• Suggesting fully-adaptive model:
⋄ mbg ’s for n ≤ 10,
⋄ bg ’s for 11 ≤ n ≤ 14,
⋄ The first infinite family of bg ’s under universal lists model,
⋄ Exact value of Bfa(G) for: trees, grids, hypercubes, cube connected cycles.
⋄ Upper bound on Bfa(G) for tori.

60 / 67

Conclusion

• For non-adaptive model,
⋄ Exact value of Bna(G) for: k-ary trees, binomial trees,
⋄ Upper bound on Bna(G) for complete bipartite graph,
⋄ A general upper bound for trees.

• HUB-GA

⋄ The first heuristic for the problem of broadcasting with universal lists.

61 / 67

Conclusion

• For non-adaptive model,
⋄ Exact value of Bna(G) for: k-ary trees, binomial trees,
⋄ Upper bound on Bna(G) for complete bipartite graph,
⋄ A general upper bound for trees.

• HUB-GA
⋄ The first heuristic for the problem of broadcasting with universal lists.

61 / 67

Future Works

• Chapter 3: close the gap between the obvious lower bound Ω(|V |) and the current
algorithm O(|V | log log n).

• Chapter 4: replace hypercube with other graphs with known broadcast time,
• Chapter 5:

⋄ Broadcast time of many networks are still unknown under the fully-adaptive
model,

⋄ Improving the current upper bound on complete graphs,
⋄ Studying the widest margin between a graph’s classical and fully-adaptive

broadcast time on n vertices
⋄ Studying the hardness of the problem.

62 / 67

Future Works

• Chapter 3: close the gap between the obvious lower bound Ω(|V |) and the current
algorithm O(|V | log log n).

• Chapter 4: replace hypercube with other graphs with known broadcast time,

• Chapter 5:

⋄ Broadcast time of many networks are still unknown under the fully-adaptive
model,

⋄ Improving the current upper bound on complete graphs,
⋄ Studying the widest margin between a graph’s classical and fully-adaptive

broadcast time on n vertices
⋄ Studying the hardness of the problem.

62 / 67

Future Works

• Chapter 3: close the gap between the obvious lower bound Ω(|V |) and the current
algorithm O(|V | log log n).

• Chapter 4: replace hypercube with other graphs with known broadcast time,
• Chapter 5:

⋄ Broadcast time of many networks are still unknown under the fully-adaptive
model,

⋄ Improving the current upper bound on complete graphs,
⋄ Studying the widest margin between a graph’s classical and fully-adaptive

broadcast time on n vertices
⋄ Studying the hardness of the problem.

62 / 67

Future Works - cont.

• Chapter 6: broadcast time of different interconnection networks under non
adaptive model.

• Chapter 7:

⋄ Finding mbg ’s and bg ’s for greater values of n,
⋄ Is there any value of n, for which B(cl)(n) < B(fa)(n)?
⋄ Defining bg ’s for adaptive and non-adaptive models (where the reachability of

the obvious lower bound of ⌈log n⌉ is questionable).

• Chapter 8:

⋄ Experiments on more data,
⋄ Trying different algorithms such as Ant Colony or particle swarm optimization,
⋄ Proposing a similar approach for minimizing Bcl(G), not for a particular

vertex!

63 / 67

Future Works - cont.

• Chapter 6: broadcast time of different interconnection networks under non
adaptive model.

• Chapter 7:
⋄ Finding mbg ’s and bg ’s for greater values of n,
⋄ Is there any value of n, for which B(cl)(n) < B(fa)(n)?
⋄ Defining bg ’s for adaptive and non-adaptive models (where the reachability of

the obvious lower bound of ⌈log n⌉ is questionable).

• Chapter 8:

⋄ Experiments on more data,
⋄ Trying different algorithms such as Ant Colony or particle swarm optimization,
⋄ Proposing a similar approach for minimizing Bcl(G), not for a particular

vertex!

63 / 67

Future Works - cont.

• Chapter 6: broadcast time of different interconnection networks under non
adaptive model.

• Chapter 7:
⋄ Finding mbg ’s and bg ’s for greater values of n,
⋄ Is there any value of n, for which B(cl)(n) < B(fa)(n)?
⋄ Defining bg ’s for adaptive and non-adaptive models (where the reachability of

the obvious lower bound of ⌈log n⌉ is questionable).
• Chapter 8:

⋄ Experiments on more data,
⋄ Trying different algorithms such as Ant Colony or particle swarm optimization,
⋄ Proposing a similar approach for minimizing Bcl(G), not for a particular

vertex!

63 / 67

Publications

• Chapter 3:
⋄ Gholami, S., Harutyunyan, H. A., & Maraachlian, E. (2022). Optimal

Broadcasting in Fully Connected Trees. Journal of Interconnection Networks,
2150037.

• Chapter 4:
⋄ Gholami, S., & Harutyunyan, H. A. (2021). A Broadcasting Heuristic for

Hypercube of Trees. In 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference (CCWC) (pp. 0355–0361).

• Chapter 5:
⋄ Gholami, S., & Harutyunyan, H. A. (2022b). Fully-adaptive Model for

Broadcasting with Universal Lists. In 24th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).

64 / 67

Publications - cont.

• Chapter 6:
⋄ Gholami, S., & Harutyunyan, H. A. (2022d). A Note on Non-adaptive

Broadcasting with Universal Lists. Special issue on Graph and Combinatorial
Optimization for Big Data Intelligence with Parallel Processing, Parallel
Processing Letters (Under Review).

• Chapter 7:
⋄ Gholami, S., & Harutyunyan, H. A. (2022a). Broadcast Graphs with Nodes

of Limited Memory. In 13th International Conference on Complex Networks
(CompleNet).

• Chapter 8:
⋄ Gholami, S., & Harutyunyan, H. A. (2022c). HUB-GA: A Heuristic for

Universal lists Broadcasting using Genetic Algorithm. Journal of
Communications and Networks (Accepted).

65 / 67

Publications - cont.

• In collaboration with other researchers:
⋄ Bakhtar, S., Gholami, S., & Harutyunyan, H. A. (2020). A new metric to

evaluate communities in social networks using geodesic distance. In
International Conference on Computational Data and Social Networks
(CSoNet) (pp. 202–216).

⋄ Gholami, S., Saghiri, A. M., Vahidipour, S., & Meybodi, M. (2021). HLA: a
novel hybrid model based on fixed structure and variable structure learning
automata. Journal of Experimental & Theoretical Artificial Intelligence, 1–26.

66 / 67

Thanks a bunch!

67 / 67

